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Effective deterministic models for chaotic dynamics perturbed by noise

Lars Jaeger* and Holger Kantz
Max-Planck-Institut fu¨r Physik Komplexer Systeme, Bayreuther Strasse 40, D-01187 Dresden, Germany

~Received 18 December 1996!

The possibility of representing deterministic chaotic systems perturbed by interactive noise by a purely
deterministic process with observational noise is discussed. We investigate the shadowing of pseudotrajectories
of a given dynamics by trajectories of a different~nearby! dynamics. A method of constructing the effective
deterministic model from observed data is presented and the relevance of this model to the observed data is
verified by several quantities.@S1063-651X~97!08405-5#
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I. INTRODUCTION

In every discussion about the relevance of the theory
nonlinear dynamical systems and ergodic theory of stra
measures for realistic physical situations, the influence
noise is an important issue. In experiments and in some s
also in computer simulations@1# one does not observe th
time evolution of a dynamical system in the mathemati
sense, but instead a nonlinear stochastic process, w
however, the stochastic component is small in compariso
the other terms. Thisdynamicalor interactivenoise inter-
feres with the deterministic part of the dynamics and,
many studies show, can have considerable effects, m
more severe than just reducing the information about
current state of the system as in the case ofmeasurementor
observationalnoise.

This has implications for both principal reasons and pr
tical considerations, in particular in nonlinear time-ser
analysis, where one tries to extract information about
underlying system from experimental observations. The s
dard tools of treating noise in chaotic data assume the e
tence of a nearby~shadowing! clean trajectory fulfilling the
underlying deterministic dynamics exactly. Based on this
sumption, sophisticated noise reduction schemes were de
oped@3–5#. In @6# it was shown that it is possible to estima
the exact dynamics of chaotic time series contaminated
large-amplitude observational noise using a cost func
that constructs locally shadowing pieces of trajectories. U
fortunately, in the presence ofdynamicalnoise, only for a
very limited class of systems are the problems as simpl
treat: In hyperbolic systems the shadowing lemma@7# holds
and a deterministic trajectory close to the noisy one ex
such that the problem is basically reduced to treating m
surement noise. Unfortunately, hyperbolicity is a prope
that is supposed never present in ‘‘real world’’ systems, s
clean shadowing trajectory of the original noise-free dyna
ics generally does not exist. The results for many procedu
of nonlinear time-series analysis therefore become ques
able in the presence of dynamical noise. This paper addre
dynamical noise. Throughout the paper we will consider s
tems of a Langevin type
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ẋ~ t !5f„x~ t !…1j~ t ! ~flow!, ~1!

xn115F~xn!1jn ~map!,

wherej(t) and jn define some stochastic processes, in o
case simple white noise. We consider the effects of nois
the zero-noise limit, i.e., the reference system remains
deterministic dynamics.

If the deterministic dynamicsf is nonhyperbolic, it is im-
possible to shadow a noisy trajectory by an exact solution
f . This is already visible in Fig. 1, where we observe t
noise-induced attractor prolongations investigated in deta
@8#. Obviously, there cannot be any shadowing if the no
attractor spreads out into regions that are not part of the c
attractor. In this paper we shall construct dynamical syste
f̃ that are close tof and whose solutions are able to shado
the solutions of the noisy system much better~parameter
shadowing!. This is demonstrated by a comparison of ch
acteristic quantities such as the attractor geometry
Lyapunov exponents for the effective dynamicsf̃ and the
original dynamicsf . Moreover, starting from a deterministi
time evolution, we shall construct pseudo-orbits that still v
late determinism, but in a much weaker way than the giv
noisy orbits, and are close to them. Again it will turn out th
a suitably constructed nearby deterministic dynamics is
perior to f when used in this construction.

As shadowing with the original dynamics turns out to
impossible, we introduce~motivated by the work in@9#! the
concept of ‘‘parameter shadowing,’’ i.e., the construction
a trajectory that fulfills a nearby dynamics and evolves in
neighborhood of the noisy trajectory. This paper is devo
to two different aspects. Our first concern is the construct
of such an effective deterministic dynamics that allows
shadowing. Using the method introduced in@6# ~and to be
briefly reviewed below!, we obtainf̃ , which, by construction,
is the optimal dynamics for finite-time shadowing. Mor
over, we will be able to construct a different pseudotraject
both closer to determinism and closer to the observed d
than any trajectory obtained with the help off . Noise reduc-
tion via minimization of the dynamical error@5# and the
breakdown of shadowing at homoclinic tangencies~HTs!
will be discussed in Sec. II, while the construction of
effective dynamicsf̃ will be discussed in Sec. III. Second, i
5234 © 1997 The American Physical Society
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FIG. 1. Hénon attractor, clean
and with 3% dynamical noise
~uniformly distributed and white!.
Note the attractor prolongation ex
ceeding the noise level by an or
der of magnitude at homoclinic
tangencies.
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order to give quantitative criteria for the relevance off̃ for
the noisy system, we want to give an analysis of the poss
effects and associated difficulties of dynamical noise in c
otic systems. We will apply different appropriate measu
and characterizations of the features of the noisy sys
compared with the purely deterministic one. A comparis
of these features obtained for the noisy attractor with thos
the attractor off̃ gives a very accurate correspondence
contrast to what we obtain with the original dynamicsf . This
will be treated in Sec. IV, with a numerical investigation
Sec. V, where we exemplify our concepts for the He´non
system as well as for an experimental data set.

Let us briefly make a comment concerning the interpre
tion of real world data. In the presence of dynamical no
the question for the ‘‘correct model’’ is somehow ambiguo
and the goal of modeling is less well described than in
case of mere measurement noise. The optimal model w
yield the deterministic part of the dynamical equations,
details of the noise process~distribution, temporal correla
tions, and higher moments!, and the interaction betwee
them. It is obvious that this is generally too ambitious, a
from a more practical point of view one might ask for
deterministic dynamical system that can reproduce the
served attractor with its geometrical and topological featu
So, in the presence of dynamical noise the aim of constr
ing the ‘‘original’’ dynamics that models the noise-free da
can be of secondary interest when we want to encounter
noise-induced effects in our model as well.

II. DYNAMICAL NOISE AND SHADOWING

A. Dynamical noise and homoclinic tangencies

Noise in dynamical systems leads to so-called pseudo
jectories$xi% with respect to the underlying dynamicsf : For
a.0 an (a) pseudotrajectory is a sequence$xi% i52`

` of
points xi such that uuf(xi)2xi11uu,a. The size of a
le
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or, equivalently, the dynamical error Edyn:
5A(1/N)( i@xi112f(xi)#

2 (N is the length of the pseudotra
jectory! gives a measure of how close this pseudotraject
is to determinism. Much work in the past few years has be
dedicated to the construction of a deterministic shadow
orbit of the pseudotrajectory@1,4#. For dynamical noise thes
methods rely on the shadowing theorem@7#, which guaran-
tees the existence of an orbit of the noise-free system
shadows the pseudo-orbit in hyperbolic systems corrupted
bounded noise. All the construction methods therefore
quire the hyperbolicity of the systemf . In the presence of
HTs, tangencies between the stable and unstable manif
these schemes neccessarily fail since the existence of a l
bounde.0 for the angle between the stable and the unsta
manifold is essential@1,7#. In fact, at HTs the trajectory is
generally driven away from the neighborhood of the attr
tor: This was systematically investigated in@8# and shall only
be discussed very briefly here.

At a HT there is no clear factorization of the tangent
space into contracting and expanding directions possible
perturbation cannot be driven along the stable manifold b
to the attractor after a small number of iterations as in
hyperbolic case. Instead, due to the tangential structure o
stable and unstable manifolds at a HT, it is driven away fr
the neighborhood of the attractor. The most expanding dir
tion in the tangential space of a HT is perpendicular to
attractor itself. Through this mechanism noise can be am
fied by orders of magnitude. Only through the folding due
the nonlinearity does the trajectory return to the neighb
hood of the attractor after a certain number of iterations.

There is evidently no shadowing possible if this mech
nism, which creates the noise-induced prolongation of
attractor easily observable in many nonhyperbolic system
the presence of dynamical noise, applies. The question
is the following: Is there a modified dynamicsf̃ that is ful-
filled by a deterministic trajectory$x̃% i shadowing the
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TABLE I. Minimum of the one-step prediction error~3! for dynamical noise and measurement noise
the Hénon system witha51.38 andb50.27 on pseudo-orbits found by minimizing Eqs.~3! and ~4! with
respect toxi . N was chosen to be 5000.

Noise level 0.005 0.01 0.015 0.02 0.025 0.03 0.03

Dynamical noise~units of 1024) 4.5 11.28 18.43 24.22 33.03 41.59 47.41
Measurement noise~units of 1024) 0.0014 0.0022 0.0025 0.0026 0.0034 0.0045 0.00
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pseudotrajectory such that the noisy trajectory can be es
tially described by a deterministic trajectory plus obser
tional noise? This would be represented by

x̃i115 f̃ ~ x̃i !,
~2!

xi5 x̃i1 j̃.

Here j̃ indicates some ‘‘pseudonoise’’ describing the d
tance between the noisy and the shadowing trajectory.
lowing @9#, we call this modified version of shadowing p
rameter shadowing. There are two steps to be taken in o
to approach this question. We first have to construct the
namics f̃ underlying the shadowing orbit. Second, we ha
to construct the shadowing orbit itself. It will turn out th
both concepts are intimately related.

We are not able to prove parameter shadowing in ma
ematical terms~for one-dimensional maps see@9# for a rig-
orous approach!. Instead, we present a way to construct
approximate solution: We derive a dynamics that descri
the features of the noisy system~see Sec. IV! much better
than the original dynamics. This allows us to construct sh
segments of shadowing trajectories forf̃ even in the vicinity
of HTs. Alternatively, we derive a pseudotrajectory off̃ that
is much closer to determinism, i.e., has much smallerEdyn,
compared to the same construction for the original dynam
We are thus not neccessarily dealing with a determini
~referring to the modified dynamics! shadowing trajectory,
but rather with a different pseudotrajectory with mu
smaller dynamical error than anyone constructed with
original dynamics.

B. Noise reduction based on shadowing

The construction of an exactly shadowing orbit rema
difficult, if not impossible, even in the case of pure obser
tional noise~where an exactly shadowing orbit for the orig
nal dynamics trivially exists!. In @4# a method based on sin
gular value decomposition and manifold decomposition
introduced, and in@1# a technique that uses Bowen’s co
struction in the proof of the shadowing theorem@7# is pre-
sented. Both methods fail at HTs~in the case of measure
ment noise already!. In the spirit of our aim we are her
looking for a method that produces a shadowing pseudo
jectory as deterministic as possible. Such a method was
troduced in@5#. Given the dynamicsf̃ in delay embedding
space@10#, the cost function

L5
1

N(
i51

N

@xi112 f̃ ~xi !#
2 ~3!
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is minimized with respect to the points$xi% by gradient de-
scent methods starting with the noisy points as initial con
tions. Conjugate gradient methods have proven to be v
robust and efficient for our purpose. In the case of meas
ment noisef̃ is simply the original dynamics~assumed to be
known or very accurately estimated!, and if unique, the so-
lution reducesL to zero~there is more than one solution t
the minimization problem in most cases; see@5#!. For dy-
namical noise, though, the minimum of Eq.~3! with the
original dynamics is considerably large, which is due to
huge deviation from deterministic behavior at HTs. Tabl
and Fig. 2 show this very clearly. In Table I we show t
minimum of Eq.~3! for the Hénon dynamics@11#

xn115a2xn
21bxn21 , ~4!

with a51.38 andb50.27 perturbed with dynamical nois
and measurement noise, respectively. In Fig. 2, the valu
Edyn
i 5uxi112 f (xi)u for each point of the noise-reduced tr

jectory is given for measurement noise and for dynami
noise, respectively. The noise levelh throughout this paper
is given in percent of the standard deviation of the sig
~rms!: h5snoise/ssignal. While Edyn

i reduces to machine pre
cision for measurement noise, it is observable that large
ues ofEdyn

i in the case of dynamical noise occur at certa
times. These correspond to the trajectory being near prim
HTs @8,12# as we explicitly checked by plotting the corre
sponding points on the attractor.

For the remainder of this paper, two problems related
the noise reduction scheme introduced in@5# are relevant.
First, HTs also have an effect on the noise reduction
measurement noise by making the minimum of Eq.~3! not
unique such that a different shadowing trajectory can e
besides the original deterministic one@5#. The distance of the
noise-reduced trajectory from the original clean trajecto
can therefore still remain considerably large whileEdyn is
reduced to machine precision. Second, all noise-reduc
schemes based on shadowing~globally or locally! require the
knowledge of the underlying deterministic dynamics~or at
least a very accurate estimate of it!. A poor fit of the dynam-
ics makes the noise-reduction scheme perform poorly
The performance of noise reduction can thus give a mea
for the accuracy of the fit of the dynamics.

In Fig. 3 we show the errorsEdyn5A(1/N)( i51
N (Edyn

i )2

andE05A(1/N)( i51
N (xi2yi)

2 for a noise-reduced trajector
$xi% ~from originally 2% measurement noise,$yi% denotes
the corresponding clean trajectory, which, of course, c
only be defined in the case of measurement noise!, where
different dynamicsf̃ were used: We vary the paramatera in
Eq. ~4! betweena51.34 anda51.42 ~wherea51.38 is the
original parameter!. Additionally, we show the average co
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FIG. 2. Individual one-step
prediction errors Edyn

i 5uyi11

2 f (yi)u after noise reduction with
Eq. ~3! using the dynamics~4! at
different times i for 3.5% mea-
surement noise~lower curve! and
dynamical noise on the He´non
system with a51.38 and
b50.27.
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rection of the original noisy trajectory $si%:
Ed5A(1/N)( i51

N (si2xi)
2. A large average correctionEd

exceeding the noise level indicates bad performance. A p
estimate for the dynamics yields very highEdyn and/orE0,
Ed . Conversely, we call the capacity of the dynamicsf to
allow for shadowing of a given noisy trajectory high if bo
Edyn andEd are small.

For the case of dynamical noise we will show that t
original dynamics is such a poorly performing dynamics
noise reduction in the same sense: We will obtain comp
bly bad values ofEdyn andEd . The construction of an effec
tive deterministic ‘‘nearby dynamics’’ in Sec. IV leads t
or

r
a-

noise-reduced trajectories whose violation of determinism
about one order of magnitude smaller than the original
namics shown in Table I and Fig. 2.

III. LOCAL SHADOWING AND THE RECONSTRUCTION
OF THE EFFECTIVE DYNAMICS

A. The effective dynamics

The minimization problem introduced in@6# for the unbi-
ased reconstruction of the dynamics in the presence of la
amplitude measurement noise turns out to lead to the des
effective model we are looking for. We are solving the loc
n

FIG. 3. Edyn, E0, andEd for a
cleaned trajectory~from 2% mea-
surement noise! of the Hénon sys-
tem ~4!, where different dynamics
were used for the noise reductio
~3!. The parametera is varied
from a51.34 toa51.42.
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FIG. 4. Loss of shadowing at HTs in the case of dynamical noise@8#. The continuous curves represent parts of the attractor of the
dynamics or a dynamics obtained using a cost function that does not use local shadowing. Three points of the noisy trajectory and
points fork51 are shown~the time order is from left to right!. The base points are far away from the images of previous base points~given
by a hexagon! as the noisy points~indicated by a square! are driven away from the attractor. There are no image points of a constructed
point in the neighborhood of the noisy point. The dashed graph represents the attractor of the modified effective dynamics: It ena
shadowing of the noisy trajectory. In order to obtain this effective dynamics a multistep prediction error (k.1) in Eq. ~5! has to be used.
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shadowing problem, and we obtain the optimal effect
model for the locally shadowing pieces of trajectory. A su
able combination of different components in the result
vectors yields the global pseudo-orbit. We recall our meth
in the following: We are searching for deterministic pieces
a trajectory~for k time steps! obeying the dynamicsf̃ , which
are at the same time close to the observed data overk time
steps. Thus, for each delay vectorsi we introduce a point
ai and itsk images under the dynamicsf̃ . Then the contri-
bution of a given single delay vectorsi to the new cost func-
tion is the sum of thek Euclidean distances betweenk pairs
of (m11)-dimensional vectors: The first pair is (si ,si11)
and the vector„ai , f̃ (ai)…, the nextk21 pairs are formed by
the successive images of these two vectors, where the im
of the noisy vector (si ,si11) are just read off from the noisy
input data, and the images of„ai , f̃ (ai)… are constructed with
the dynamicsf̃ . Finally, ai is defined by the fact that it mini
mizes the sum of thesek distances or, in other words, min
mizes the accumulatedk-step Euclidean prediction erro
The pointsai are called base points in the following an
represent the optimal shadowing piece of a trajectory w
dynamicsf̃ . We are looking forf̃ such that these shadowin
orbits are optimally close to the observed data. The c
function thus reads

S25 (
i5m

T2n

(
j51

k

u~si1 j2m , . . . ,si1 j !2~ai , j2m , . . . ,ai , j !u2,

~5!

which has to be minimized with respect to theai and the
parameters inf̃ .

The numerical implementation of this cost function f
different Ansätze of the function f is in detail discussed in
@6#. It was shown that this methods works very well in t
case of pure measurement noise, where a shadowing tr
e
-

d
f

es

h

st

ec-

tory of the original dynamics evidently exists, and the tr
underlying original dynamics could be obtained to very hi
accuracy. The multistep cost function avoids the problem
mutual inconsistency between subsequent base points
countered if one uses only a one-step prediction error c
function.

Due to the lack of a shadowing trajectory of the origin
dynamics in the case of dynamical noise we observe a str
form of what we phrased ‘‘mutual inconsistency’’ in@6# that
cannot be overcome on using the original dynamics.
k51 in Eq. ~5! the image of a base pointai of a pointsi is
generally not close to the base pointsai1 j of the next points
si1 j of the pseudotrajectory. Especially at HTs the mec
nism described above and in@8# induces the loss of the shad
owing possibility, which is explained in Fig. 4. The use
the standard cost function~3! ~with minimization with re-
spect to the parameters inf̃ ) or usingk'1 in Eq. ~5! is not
sensitive to this mutual inconsistency as local shadowing
not used. By calculating the optimal effective dynamics u
ing the cost function~5! with sufficiently largek we suppress
this mutual inconsistency: The resulting dynamicsf̃ ~sche-
matically given in Fig. 4 by a dashed line! by construction
leads to local shadowing for the noisy trajectory also at H
The base points$ai% appropriately weighted over the differ
ent components serve well for a noise-reduced traject
Thus we obtain both the effective deterministic dynam
and the approximate shadowing orbit. In principle, o
should choose the number of stepsk as large as possible. Th
higherk is chosen the better our construction of an ‘‘effe
tive’’ dynamics for the noisy trajectory is. If we were able
find an initial vectoram and a functionf such that the iterates
of am remain close to the observed data for all the n
T2m steps, we would have solved the problem in the op
mal way: We would know a shadowing clean trajectory f
all our noisy observations. Due to the sensitive depende
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on initial conditions, this is numerically not achievable, a
in practice we are able to proceed untilk'15. For most
systems, though, fork'15 the divergence of trajectories in
tially within the noise level will reach the length scale of th
entire attractor.

B. Increased parameter shadowing

In @9# it was rigorously shown that one-dimensional ma
can allow increased parameter shadowing in specific par
eter regimes: For a given pseudotrajectory of a dynam
f a there exists ad.0 such that there exists a shadowi
trajectory evolving afterf a1d , where it is assumed that th
Kolmogorov-Sinai~KS! entropy of the map increases mon
tonically ina. The increase of the parameter for the tent m
and the logistic equation is then related to the increase of
entropy under perturbation with noise. In this section
want to relate our work to these results. Our method is
restricted to a specific class of systems, but, of course, ap
cable to the one-dimensional maps considered in@9#. Our
quantitative results are in full agreement with their quali
tive predictions. Choosing theAnsatzof a quadratic polyno-
mial f a(x)512ax2 with only a as a parameter and applyin
the cost function~5! for a fit, we obtain increasing param
etersa for the effective deterministic dynamics; see Fig.
Complementing the results in@9# our methods thus yields
quantitative results: We chosea51.8 for the deterministic
map and construct the effective dynamics for differentk in
Eq. ~5! and noise levels. The effective parametera describ-
ing the effective dynamics increases withk and converges
against an effectivea that can be considered as the optim
increased shadowing parameter. In order to show the
evance of these effective parameters we construct pseud
jectories using the new parameters and compare the res
the old parameters~Fig. 5!: The capacity off̃ a for shadowing
increases drastically.

IV. CHARACTERIZATION OF NOISY SYSTEMS

The presence of noise changes the invariant feature
the system. Exactly speaking, dimensions, entropies,
Lyapunov exponents defined in the standard way beco
meaningless since on the small scales the noise pro
dominates and they become infinite. If the noise level
small enough, though, we are still able to observe the c
acteristic scaling properties on larger scales such that e
tive Lyapunov exponents can be defined. These values
differ considerably from the deterministic values.

In this section we want to develop some measures in o
to compare the effective dynamicsf̃ constructed in Sec. III
to the original dynamicsf to show quantitatively the rel
evance off̃ for the modeling of the noisy data. They will b
used for model verification in Sec. V.

A. Cross correlations

The scaling range of the standard correlation dimens
@13# D2(e)'(]/] lne)ln( i , jÞ i

T Q(e2uxi2xj u)'const is lim-
ited to large scales in the presence of noise. The stan
correlation sum is not very useful in the case of dynami
noise, as the noise acts on different length scales~noise-
s
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induced attractor deformation@8#!. Another question is how
comparable the noisy attractor is with the original attractor
the deterministic system after the deformations or prolon
tions occurring due to noise@8#. A quantitative comparison
of the shape of two fractal attractors can be made by
cross correlation sum. First we reconstruct the attractor
delay embedding with dimensionm. A measure for the de-
viation of the noisy attractor from the clean attractor is th
given in @14#, to which we refer for more details: Computin
the cross correlation sum

CXY~e!5
1

uXuuYu(i
uXu

(
j

uYu

Q~e2uuxi2yj uu! ~6!

FIG. 5. Logistic mapxn115121.8xn
2 with noise. The dynamics

was reconstructed according to Eq.~5! for different k using the
quadratic ansatzf a(x)512ax2. The parametera versus the noise
level in rms is shown. Below we show the obtainedEdyn after noise
reduction with the original dynamicsxn115121.8xn

2 and the effec-
tive dynamics with a value ofa obtained fork58.
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between the setX of clean data pointsxi and the setY of
noisy pointsyj , the differences between the attractors b
come observable below a criticalec . Precisely, after defining
a tolerancer, ec is defined as follows: fore,ec ,

u lnCXX2 lnCXYu<r, u lnCYY2 lnCXYu<r,

and fore>ec ,

u lnCXX2 lnCXYu.r or u lnCYY2 lnCXYu.r. ~7!

In the case of measurement noise thisec is again determined
by the noise level@14#. The specific effects of dynamica
noise on different length scales can be very well observed
the cross correlation with the clean data exemplified in Fig

FIG. 6. Cross correlation sumsC between clean and noisy
Hénon attractor~4! with 2% white uniform noise for dynamical
noise and measurement noise. The length scale is given in a dy
logarithm. The vertical line gives the noise level.
-

in
6

for the Hénon system: The curve for measurement no
characterizes a distinctec corresponding to the noise leve
while the curve for dynamical noise shows anec that is an
order of magnitude larger than the noise level. This is
signature of the noise-induced attractor deformation
scribed above and in@8#. A dynamics that describes the nois
data more appropriately is expected to yield an attracto
better correspondence with the noisy one: The attra
should form a good ‘‘skeleton’’ for the noisy atractor~see
Figs. 1 and 9!, such that the cross orrelation diverges fro
the autocorrelation~solid line! at smallere.

B. Lyapunov exponents

The degree of chaos in noisy systems can be measure
considering the rate of divergence of two initially close tr
jectories under the same realization of noise. Mathematic
there exists a well-defined concept of Lyapunov exponent
what is called stochastic dynamical systems@15,16#. The
maximal Lyapunov exponent is thus defined by

l5 lim
T→`

1

T
lnS U)

i51

T

D f ~xi !u0U D , ~8!

where$xi% is the noisy trajectory, for almost allu0. This is a
clear mathematical definition, but it can lead to a severe m
interpretation of the effects of noise~e.g., the claim of noise-
induced order in the logistic map@17#!. In applications to
noisy systems one has to make the unrealistic assump
that neighboring trajectories are subject to the identical no
realization, such that the exponent given by Eq.~8! can never
be determined from experimental data. In@18# a more natural
indicator of chaos in noisy systems is introduced consider
the rate of separation of nearby trajectories under differ
realizations of noise that corresponds exactly to what
calculates when determining the Lyapunov exponent us

dic
f

d

t

,

-

FIG. 7. S(t,e) in Eq. ~10! for
the Hénon system with 2% dy-
namical white uniformly distrib-
uted noise for different e,
e5k3~noise level!, with
k5228. Note that the slopes o
the curves differ for differente.
For comparison we also plotte
the slopes of the clean system
~most upper and lower straigh
lines!. Our estimate of the effec-
tive ~or finite-range! Lyapunov
exponent gives approximately 0.4
compared to l50.318 for the
Lyapunov exponent of the noise
free system.
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FIG. 8. ‘‘Lyapunov expo-
nents’’ for the Hénon system~4!
after Eq.~10! ~different noise real!
and Eq.~8! ~identical noise real!
for different noise levels. The fi-
nite range takes into account th
e dependence and curvature e
fects in curves like Fig. 7.
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ce
the phase-space method in@19#. Nevertheless, the notion o
Lyapunov exponents becomes awkward in the presenc
noise: The clear and unambigious definition of Lyapun
exponents~8! relies on the ability to observe exponenti
divergence of nearby trajectories in the limitT→`, which
implies the limite→0. This becomes impossible in the pre
ence of noise under different realizations for neighboring
jectories as the initial distance between neighboring traje
ries cannot be chosen smaller than the noise level in orde
define an exponential divergence. Noise introduces an a
tional length scale in chaotic systems, below which the
vergence of nearby trajectories is dominated by a diffus
of
v

-
o-
to
di-
i-
e

process and above which the deterministic divergence
curs. In order to give a measure of the chaos of the no
system a ‘‘finite-size Lyapunov exponent’’ @18#

l~e,Dn!5
1

DnK lnS dx~n1Dn!

dx~n! D L ~9!

along a trajectory$xn% is introduced, wheredx(n)5e gives
the initial distance between the neighboring trajectori
The average one-step divergence (Dn51) measures the pre
dictability of the system with respect to a finite toleran
given a finite initial precisione. In the presence of only one
FIG. 9. Attractor obtained by
fitting the noisy data underlying
Fig. 1 using the cost function~5!
with k514 and a function~11!
with six neurons.
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FIG. 10. L2 distance~12! be-
tween the fitted dynamicsf̃ and
the unperturbed dynamicsf as a
function of the noise level for the
Hénon system~4! for different k
used in the construction off̃ by
Eq. ~5!.
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positive Lyapunov exponent this predictability is direct
correlated to thee entropy introduced by Kolmogorov@20#
and thoroughly discussed in@21#. For e→0, Dn→` in the
noiseless case we recover the usual Lyapunov exponent
in contrast to the well-defined Lyapunov exponent for infi
tesimal perturbations the finite-size Lyapunov exponen
explicit e dependent. In@18# a particular length and time
scale are chosen to define a measure of chaos in noisy
tems minimizing the information entropy of the noisy sy
tem.

The difference of these two different definitions of
Lyapunov exponent~8! and ~9! becomes obvious fo
strongly nonuniform systems where there is an alternatio
ut

is

ys-

of

locally positive and negative Lyapunov exponents over lo
time periods@18#: In the case of the identical noise realiz
tion the contracting intervals can compensate the expan
intervals~as in the noiseless case!, and in the case of a cor
responding noise-induced shift of the invariant measur
shift from positive to negative values of the Lyapunov exp
nents can occur@17#. This is no longer possible in the case
different noise realizations: Here for the contracting interv
the contraction is limited to the noise level.

We calculate the finite-size Lyapunov exponent in
modified way using the algorithm to calculate the larg
Lyapunov exponent introduced in@22#. This method detects
explicitly the exponential divergence of nearby trajectori
FIG. 11. Geometrical distance
ec defined in Eq.~6! of the attrac-
tor of the fitted dynamics from the
noisy attractor as a function ofk
in Eq. ~5! for the Hénon system
with 3% noise (n50 corresponds
to f̃5 f ).
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FIG. 12. Lyapunov exponents
for the fitted dynamics for differ-
ent k in Eq. ~5! as a function of
the noise level. The vertical lines
give the results from Fig. 8.
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which is implicitly assumed to be the case in@18,19#. Choos-
ing a trajectory of the system of lengthT, we consider for
each pointxi a certain numberK of nearby pointsyj

i that are
close toxi within e. Then we compute the average distanc
D between all these neighboring trajectories and the re
ence trajectories$xi% for the differentxi as a function of the
relative timet. Thus we compute

S~e,t!5
1

T(i51

T

lnS 1K(
j51

K

D~xi ,yi
j ;t!D . ~10!

For a certain ranget, S(t) should increase linearly with th
slopel(e), which is the estimate of the Lyapunov expone
]S(t,e)/]t is equivalent to the average one-step diverge
(Dn51 and averaging overn) in Eq. ~9!. For a thorough
discussion of this method, see@22#. This scaling is an ex-
plicit test for exponential divergence of the trajectories n
automatically guaranteed in noisy systems as in addition
exponential divergence of nearby trajectories we have an
derlying diffusion process following a power-law behavio
This is shown in Fig. 7, whereS(t) for the Hénon system
with 2% dynamical noise is presented for differente. We
clearly observe a scaling range for the growth of the ini
perturbation of sizee. We also observe that the slope
slightly different for smaller values ofe @i.e.,S(t) is explic-
itly e dependent#. We stress that for high noise levels th
scaling range disappears and an average exponential gr
cannot be defined any longer. In Fig. 8 we show
Lyapunov exponents obtained for the two different defi
tions ~8! and~10! for the noisy He´non system~4! for differ-
ent noise levels. We explicitly checked for scaling using E
~10!. The finite bandwidth of the finite-size Lyapunov exp
nents obtained using Eq.~10! takes into account theire de-
pendence as well as the small curvature. Besides the di
ences between the two methods, one can clearly observ
deviation from the underlying deterministic system~zero
noise!.
s
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We claim that the rate of divergence of nearby trajector
under different realizations of the noise is best expressed
the slope in Eq.~10!. As we construct effective dynamics fo
the noisy systems we constructed the cost function~5! such
that the change in divergence~change of Lyapunov expo
nents! due to noise is best considered in the estimate of
optimal model functionf̃ . Here our focus is on the modelin
of these changes. A more systematic investigation about
there occurs a change of the exponential behavior in no
systems will be explained elsewhere.

V. NUMERICAL INVESTIGATIONS

A. The Hénon attractor

As a numerical illustration we choose the He´non system
~4! with dynamical noise. We will reconstruct the modifie
features of the noisy system using a modified determini
model. A construction of an optimally shadowing trajecto
with this model will be compared to the construction wi
the original dynamics.

Constructing an effective dynamics with Eq.~5!, we ob-
tain an attractor that shadows the noisy attractor much be
than the original attractor. A first impression can be obtain
in Fig. 9: Here we show the attractor of the dynamics rec
structed from the data shown in Fig. 1 using the cost funct
~5! with k514. We intentionally do not restrict ourselves
the structure of the original system in the choice of theAn-
satzfunction. Therefore, neural networks@6,23#

f ~x!5(
i51

6
ai

11expS 2 (
k51

2

wikxk2bi D ~11!

have proven to yield very good results as a general form
the functionf . In particular, we chose a neural net with s
neurons in one hidden layer.
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FIG. 13. Edyn
1 and Edyn

3 ~in
units of 1021) for cleaned trajec-
tories dependent onk in the cost
function ~5! used for the construc-
tion of the effective dynamicsf̃ .
The original trajectory was cor-
rupted with 3% noise. The lowe
panel shows the distanc
Ed5@(1/N)( i(si2yi)

2#1/2 of the
cleaned from the noisy data
(n50 corresponds tof̃5 f ).
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In order to see how the effective dynamics is shifted w
respect to the original dynamics@and to compare the effect
of varying k in Eq. ~5!# we have to introduce a measure f
the distances of two dynamical systems. In@6# we introduced
a natural form to measure the distance between two map
the L2 norm restricted to the attractorA of the unperturbed
dynamics and weighted according to the invariant measu

dL25^@ f ~x!2 f̃ ~x!#2&A'
1

T(t51

T

@xt112 f̃ ~xt!#
2, ~12!

where$xt% is a noise-free time series given byf . This dis-
tance is shown in Fig. 10 as a function of the noise leve
by

f

dynamical noise in the He´non system using fits as in Eq.~5!
for differentk. In order to see how much better the effecti
dynamics obtained with a high step prediction error c
function describes the noisy dynamics we show the attra
distance (ec for the cross correlation! defined in Eq.~6! in
Fig. 11: For high enoughk in Eq. ~5! the distance to the
noisy attractor appears on a scale one order of magni
smaller than the original dynamics. As impressive are
results for the Lyapunov exponents: In Fig. 12 we show
Lyapunov exponents of the effective dynamics for differe
k in Eq. ~5!. They should be compared with Fig. 8~given by
the vertical bars in Fig. 12!.

In order to see how much better the ‘‘new’’ dynamic
describes the noisy data in terms of our concept of pseu
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FIG. 14. Individual one-step
prediction errors Edyn

i 5uyi11

2 f (yi)u after noise reduction with
Eq. ~3! using the original dynam-
ics ~Hénon map! and usingf̃ of a
k514 fit ~5! for 3% dynamical
noise.
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trajectory shadowing, we performed a noise reduction
cording to Eq.~3! with the original dynamics and the fitte
dynamics and calculated thek-step dynamical error

Edyn
~k! 5A1

N(
i51

N

@yi1k2 f k~yi !#
2 ~13!

on the cleaned data$yi%. In Fig. 13 we show the result fo
k51 andk53 for differentn-step prediction errors used i
the cost function. The values forEdyn

k decrease by an order o
magnitude if the multistep prediction error in Eq.~5! is used
in the fits. In Fig. 14 we show the individualEdyn

i after noise
reduction for the original dynamics andf̃ ~compare also Fig.
2!.

All these figures show very well how much better t
noisy system can be described by the modified dynam
Figures 9–12 together give a very nice example of the p
sibility of describing noisy systems by modified effectiv
dynamics:~i! The constructed cleaned trajectory is more d
terministic~i.e., with lowerEdyn) than the equivalent one fo
the original dynamics,~ii ! the synthetic attractor describe
the geometric features of the noisy attractor much better,
~iii ! the quantitative analysis of Lyapunov exponents in
cates that features of the noisy system are better describe
the modified dynamics.

B. An experimental example

As a further example of the effect of the noise-induc
attractor deformation and our finding of an effective dyna
ics we want to illustrate our method for an experimental d
set. Figure 15~a! shows the attractor of a Poincare´ map of the
laser experiment with feedback, run by the National Instit
of Optics in Florence, Italy@24#. It was calculated by a fit
with a neural network with six neurons. We artificially pe
turbed the map with 1% white, uniformly distributed nois
c-

s.
s-

-

nd
-
by

d
-
a

e

.

The resulting noisy attractor is shown in Fig. 15~b!. We can
clearly observe the attractor deformation at homoclinic t
gencies@which are also marked in Fig. 15~a!, calculated after
the method in@8##. In Fig. 15~d! we show a part of the
obtained attractor performing a fit using the cost function~5!
with k512. This gives a deterministic attractor much bet
serving as a skeleton for the noisy attractor in Fig. 15~b!
@with the same part as in Fig. 15~d!, given also in Fig. 15~c!#.
We want to make one brief comment about the origin
noise in the surface of sections of experimental flows. No
flows do not reduce to noisy maps in the way we ha
treated them. In general, the noise will depend on the poin
the surface of section@8#. The effect of noise is different in
different parts of the phase space, depending on the l
stretching and dissipation resulting in a spatially depend
amplitude density of noise in the Poincare´ section. But the
general effect of the noise-induced attractor deformation
pears as well. An investigation on experimental systems w
dynamical noise is in progress@25#.

VI. CONCLUSION

We presented a different approach to characterize d
that are contaminated by dynamical noise. This method
based on the idea of a modified shadowing in nonhyperb
systems: parameter shadowing. The features of the noisy
tem can be quite different from the underlying determinis
system, which is~i! geometrically expressed in attracto
modifications@8#, which leads to different scaling behavio
for the correlation dimension expressed by a large devia
from the original attractor in the cross correlation integr
and ~ii ! quantitatively expressed in different values of t
finite-range Lyapunov exponentsl(e) for the noisy system.
We were able to show how much better the noisy system
be described by a modified dynamics~i! leading to an attrac-
tor with geometrical features similar to the noisy system a
~ii ! yielding values ofl that are similar to the noisy system
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FIG. 15. ~a! Poincare´ map of the Florence Laser attractor with homoclinic tangencies.~b! Attractor with dynamical noise.~c! Enlarge-
ment of a noisy attractor~b! and the attractor in~a!. ~d! Enlargement of a noisy attractor~c! and the attractor of a dynamics obtained by
fit ~5! with k512.
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Our method of constructing this effective dynamicsf̃ is
based on using a multistep prediction error in the cost fu
tion ~5! such that locally shadowing pieces of trajectories
constructed and the dynamicsf̃ underlying these shadowin
trajectories can be extracted. With the help off̃ a less noisy
trajectory can be constructed using methods introduce
@1,4,5#. It remains an open problem whether an exactly sh
owing trajectory for a modified dynamics exists generally
nonhyperbolic systems in the sense of the ordinary shad
ing theorem@7# for hyperbolic systems~as was shown for
very specific one-dimensional maps in@9#!. This question
exceeds the purpose of this paper, but we hope to be ab
e
.
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-
e
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-
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give some qualitative reasoning in this direction.
Our last point concerns the analysis of real data: Dyna

cal noise evidently is present in many physical data s
Often the detection of dynamical noise remains imposs
~see@26#!. Our cost function~5! should give some hints in
this directions~if the observed noise level is not too high!: If
we use differentk and obtain varying results for the fit~con-
sistently for different forms of theAnsatz fp) we can give
evidence of the presence of dynamical noise. On apply
the standard techniques of nonlinear time-series analysis
most likely obtains results corresponding to the modifie
effective dynamics rather than the original dynamics.
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