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Effective deterministic models for chaotic dynamics perturbed by noise
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The possibility of representing deterministic chaotic systems perturbed by interactive noise by a purely
deterministic process with observational noise is discussed. We investigate the shadowing of pseudotrajectories
of a given dynamics by trajectories of a differdnearby dynamics. A method of constructing the effective
deterministic model from observed data is presented and the relevance of this model to the observed data is
verified by several quantitieS1063-651X97)08405-3

PACS numbes): 05.45+b

I. INTRODUCTION x(t)=f(x(t))+ &t) (flow), (1)

In every discussion about the relevance of the theory of
nonlinear dynamical systems and ergodic theory of strange Xni1=F(x,)+& (map,
measures for realistic physical situations, the influence of

noise_ isan importar_1t issu_e. In experiments and in some Sen%-hereg(t) and £, define some stochastic processes, in our
also in computer simulationgl] one does not observe the 556 simple white noise. We consider the effects of noise in
time evolution of a dynamical system in the mathematicakhe zero-noise limit, i.e., the reference system remains the
sense, but instead a nonlinear stc_)chastlc. process,_whe@eterministic dynamics.
however, the stochastic component is small in comparison to |f the deterministic dynamicé is nonhyperbolic, it is im-
the other terms. This’ynamicalor interactive noise inter- possib|e to shadow a noisy trajectory by an exact solution of
feres with the deterministic part of the dynamics and, as. This is already visible in Fig. 1, where we observe the
many studies show, can have considerable effects, muatoise-induced attractor prolongations investigated in detail in
more severe than just reducing the information about th¢g]. Obviously, there cannot be any shadowing if the noisy
current state of the system as in the casenehsuremendr  attractor spreads out into regions that are not part of the clean
observationalnoise. attractor. In this paper we shall construct dynamical systems

This has implications for both principal reasons and prac-f that are close td and whose solutions are able to shadow
tical considerations, in particular in nonlinear time-seriesthe solutions of the noisy system much bettparameter
analysis, where one tries to extract information about theshadowing. This is demonstrated by a comparison of char-
underlying system from experimental observations. The staracteristic quantities such as the attractor geometry and
dard tools of treating noise in chaotic data assume the exid-yapunov exponents for the effective dynamitsand the
tence of a nearbyshadowing clean trajectory fulfilling the original dynamicsf. Moreover, starting from a deterministic
underlying deterministic dynamics exactly. Based on this astime evolution, we shall construct pseudo-orbits that still vio-
sumption, sophisticated noise reduction schemes were devdate determinism, but in a much weaker way than the given
oped[3-5]. In[6] it was shown that it is possible to estimate noisy orbits, and are close to them. Again it will turn out that
the exact dynamics of chaotic time series contaminated b§ Suitably constructed nearby deterministic dynamics is su-
large-amplitude observational noise using a cost functioerior tof when used in this construction.
that constructs locally shadowing pieces of trajectories. Un- AS shadowing with the original dynamics turns out to be
fortunately, in the presence afynamicalnoise, only for a  impossible, we introducémotivated by the work iri9]) the
very limited class of systems are the problems as simple t§oncept of “parameter shadowing,” i.e., the construction of
treat: In hyperbolic systems the shadowing lenfifigholds @ trajectory that fulfills a nearby dynamics and evolves in the
and a deterministic trajectory close to the noisy one exist§€ighborhood of the noisy trajectory. This paper is devoted
such that the problem is basically reduced to treating meal® two different aspects. Our first concern is the construction
surement noise. Unfortunately, hyperbolicity is a propertyof such an effective deterministic dynamics that allows for
that is supposed never present in “real world” systems, so #hadowing. Using the method introduced[8J (and to be
clean shadowing trajectory of the original noise-free dynamJbriefly reviewed below we obtainf, which, by construction,
ics generally does not exist. The results for many procedurei§ the optimal dynamics for finite-time shadowing. More-
of nonlinear time-series analysis therefore become questiorpver, we will be able to construct a different pseudotrajectory
able in the presence of dynamical noise. This paper addressesth closer to determinism and closer to the observed data
dynamical noise. Throughout the paper we will consider systhan any trajectory obtained with the helpfofNoise reduc-
tems of a Langevin type tion via minimization of the dynamical errdi5] and the

breakdown of shadowing at homoclinic tangenciesls)
will be discussed in Sec. Il, while the construction of an

*Electronic address: jaeger@mpipks-dresden.mpg.de effective dynamics will be discussed in Sec. lll. Second, in
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order to give quantitative criteria for the relevancefofor  or,  equivalently, the  dynamical  error Egyp:
the noisy system, we want to give an analysis of the possible- \/(1/N)=;[x; . ;—f(x;)]° (N is the length of the pseudotra-
effects and associated difficulties of dynamical noise in chajectory) gives a measure of how close this pseudotrajectory
otic systems. We will apply different appropriate measuress to determinism. Much work in the past few years has been
and characterizations of the features of the noisy systergedicated to the construction of a deterministic shadowing
compared with the purely deterministic one. A comparisonorbit of the pseudotrajectofyl,4]. For dynamical noise these
of these features obtained for the noisy attractor with those ahethods rely on the shadowing theorém, which guaran-
the attractor off gives a very accurate correspondence intees the existence of an orbit of the noise-free system that
contrast to what we obtain with the original dynamic§his  shadows the pseudo-orbit in hyperbolic systems corrupted by
will be treated in Sec. IV, with a numerical investigation in bounded noise. All the construction methods therefore re-
Sec. V, where we exemplify our concepts for thénde  quire the hyperbolicity of the syster In the presence of
system as well as for an experimental data set. HTs, tangencies between the stable and unstable manifolds,
Let us briefly make a comment concerning the interpretathese schemes neccessarily fail since the existence of a lower
tion of real world data. In the presence of dynamical noisebounde>0 for the angle between the stable and the unstable
the gquestion for the “correct model” is somehow ambiguousmanifold is essentigll,7]. In fact, at HTs the trajectory is
and the goal of modeling is less well described than in theyenerally driven away from the neighborhood of the attrac-
case of mere measurement noise. The optimal model woulgr: This was systematically investigated 8] and shall only
yield the deterministic part of the dynamical equations, thebe discussed very briefly here.
details of the noise procegdistribution, temporal correla- At a HT there is no clear factorization of the tangential
tions, and higher momentsand the interaction between space into contracting and expanding directions possible. A
them. It is obvious that this is generally too ambitious, andperturbation cannot be driven along the stable manifold back
from a more practical point of view one might ask for a to the attractor after a small number of iterations as in the
deterministic dynamical system that can reproduce the obhyperbolic case. Instead, due to the tangential structure of the
served attractor with its geometrical and topological featuresstable and unstable manifolds at a HT, it is driven away from
So, in the presence of dynamical noise the aim of constructhe neighborhood of the attractor. The most expanding direc-
ing the “original” dynamics that models the noise-free datation in the tangential space of a HT is perpendicular to the
can be of secondary interest when we want to encounter thattractor itself. Through this mechanism noise can be ampli-

noise-induced effects in our model as well. fied by orders of magnitude. Only through the folding due to
the nonlinearity does the trajectory return to the neighbor-
II. DYNAMICAL NOISE AND SHADOWING hood of the attractor after a certain number of iterations.

There is evidently no shadowing possible if this mecha-
nism, which creates the noise-induced prolongation of the

Noise in dynamical systems leads to so-called pseudotrattractor easily observable in many nonhyperbolic systems in
jectories{x;} with respect to the underlying dynamitsFor  the presence of dynamical noise, applies. The question now
a>0 an (@) pseudotrajectory is a sequenfe};— ., of s the following: Is there a modified dynamicsthat is ful-
points x; such that||f(x;)—Xi+1||<a. The size of « filled by a deterministic trajectory{x}; shadowing the

A. Dynamical noise and homoclinic tangencies
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TABLE I. Minimum of the one-step prediction errg¢8) for dynamical noise and measurement noise on
the Haon system witha=1.38 ando=0.27 on pseudo-orbits found by minimizing E@8) and (4) with
respect tax; . N was chosen to be 5000.

Noise level 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Dynamical noisgunits of 10°%) 4.5 11.28 18.43 24.22 33.03 41.59 47.41
Measurement nois@inits of 10 %) 0.0014 0.0022 0.0025 0.0026 0.0034 0.0045 0.0046

pseudotrajectory such that the noisy trajectory can be esseis minimized with respect to the poin{s;} by gradient de-
tially described by a deterministic trajectory plus observa-scent methods starting with the noisy points as initial condi-

tional noise? This would be represented by tions. Conjugate gradient methods have proven to be very
o~ robust and efficient for our purpose. In the case of measure-
Xi+1=1(X), (2)  ment noisef is simply the original dynamic&@ssumed to be

known or very accurately estimatednd if unique, the so-
lution reduced. to zero(there is more than one solution to
the minimization problem in most cases; 4&¢). For dy-

_ namical noise, though, the minimum of E(B) with the
Here £ indicates some “pseudonoise” describing the dis-original dynamics is considerably large, which is due to a
tance between the noisy and the shadowing trajectory. Fohuge deviation from deterministic behavior at HTs. Table |
lowing [9], we call this modified version of shadowing pa- and Fig. 2 show this very clearly. In Table | we show the
rameter shadowing. There are two steps to be taken in ordeninimum of Eq.(3) for the Hexon dynamicg11]

to approach this question. We first have to construct the dy-

X :’)\(‘i +E.

namicsf underlying the shadowing orbit. Second, we have Xn+1=a—Xﬁ+ bXn-1, (4)
to construct the shadowing orbit itself. It will turn out that
both concepts are intimately related. with a=1.38 andb=0.27 perturbed with dynamical noise

We are not able to prove parameter shadowing in mathand measurement noise, respectively. In Fig. 2, the value of
ematical termgfor one-dimensional maps s¢@] for a rig- E'dyn= |xi-1—f(x;)| for each point of the noise-reduced tra-
orous approach Instead, we present a way to construct anjectory is given for measurement noise and for dynamical
approximate solution: We derive a dynamics that describenoise, respectively. The noise levelthroughout this paper
the features of the noisy systefsee Sec. IY much better is given in percent of the standard deviation of the signal
than the original dynamics. This allows us to construct shor{rms): 7= o nsjse/ signai- While EiUlyn reduces to machine pre-
segments of shadowing trajectories foeven in the vicinity ~ cision for measurement noise, it is observable that large val-
of HTs. Alternatively, we derive a pseudotrajectoryfahat ~ ues ofEgy, in the case of dynamical noise occur at certain
is much closer to determinism, i.e., has much smallgy,, times. These correspond to the trajectory being near primary
compared to the same construction for the original dynamicsHTs [8,12] as we explicitly checked by plotting the corre-
We are thus not neccessarily dealing with a deterministisponding points on the attractor.

(referring to the modified dynamigshadowing trajectory, For the remainder of this paper, two problems related to
but rather with a different pseudotrajectory with muchthe noise reduction scheme introduced[%} are relevant.
smaller dynamical error than anyone constructed with thé-irst, HTs also have an effect on the noise reduction for
original dynamics. measurement noise by making the minimum of E).not
unigue such that a different shadowing trajectory can exist
besides the original deterministic offe. The distance of the
noise-reduced trajectory from the original clean trajectory

The construction of an exactly shadowing orbit remainscan therefore still remain considerably large whig, is
difficult, if not impossible, even in the case of pure observateduced to machine precision. Second, all noise-reduction
tional noise(where an exactly shadowing orbit for the origi- schemes based on shadowigtpbally or locally) require the
nal dynamics trivially exists In [4] a method based on sin- knowledge of the underlying deterministic dynamics at
gular value decomposition and manifold decomposition ideast a very accurate estimate of A poor fit of the dynam-
introduced, and irf1] a technique that uses Bowen's con- ics makes the noise-reduction scheme perform poorly too.
struction in the proof of the shadowing theor¢i] is pre-  The performance of noise reduction can thus give a measure
sented. Both methods fail at HT& the case of measure- for the accuracy of the fit of the dynamics.
ment noise already In the spirit of our aim we are here  In Fig. 3 we show the errorggy,= (1/N) 2L, (Ey,)?
looking for a method that produces a shadowing pseudotragnde,= \/(1/N)=N,(x;—y;)? for a noise-reduced trajectory
jectory as deterministic as possible. Such a method was iny.1 (from originally 2% measurement noisgy;} denotes
troduced in[5]. Given the dynamicg in delay embedding the corresponding clean trajectory, which, of course, can

B. Noise reduction based on shadowing

space{10], the cost function only be defined in the case of measurement npiséere
LN different dynamics were used: We vary the paramagem
L= _z [X 41— F(x)]? 3) Eq. _(4) betweena= 1.34_ qnda= 1.42 (wherea=1.38 is the

i=1 original parametegr Additionally, we show the average cor-
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trajectory {s;}: noise-reduced trajectories whose violation of determinism is
Eq=V(IN)=] (s;—x)2. A large average correctioEy,  about one order of magnitude smaller than the original dy-
exceeding the noise level indicates bad performance. A podtamics shown in Table | and Fig. 2.
estimate for the dynamics yields very high,, and/orE,,
E4. Conversely, we call the capacity of the dynamfcto

lll. LOCAL SHADOWING AND THE RECONSTRUCTION
allow for shadowing of a given noisy trajectory high if both
Eqyn andEy are small.

OF THE EFFECTIVE DYNAMICS
For the case of dynamical noise we will show that the A. The effective dynamics
original dynamics is such a poorly performing dynamics for The minimization problem introduced [6] for the unbi-
noise reduction in the same sense: We will obtain comparaased reconstruction of the dynamics in the presence of large-
bly bad values o€y, andEy. The construction of an effec- amplitude measurement noise turns out to lead to the desired
tive deterministic “nearby dynamics” in Sec. IV leads to effective model we are looking for. We are solving the local
0.007
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P surement noigeof the Henon sys-
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0008 = i were used for the noise reduction
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0.002 F 4
0.001 i
0 Y &
1.34 1.39 1.4

1.41



5238 LARS JAEGER AND HOLGER KANTZ 55

Si+3

!
1
'
i
'
!
I
'
'
!
!

F(FCx)
LREE) |

'
i
)
'
(
'
'
'
'
'
|
'

'
|
t
'
i
'
'
'
i
|
'
'
'

‘

'

'

i

i

'

[

!

FIG. 4. Loss of shadowing at HTs in the case of dynamical nid@$eThe continuous curves represent parts of the attractor of the true
dynamics or a dynamics obtained using a cost function that does not use local shadowing. Three points of the noisy trajectory and their base
points fork=1 are showr(the time order is from left to right The base points are far away from the images of previous base fgives
by a hexagohas the noisy pointéindicated by a squayere driven away from the attractor. There are no image points of a constructed base
point in the neighborhood of the noisy point. The dashed graph represents the attractor of the modified effective dynamics: It enables local
shadowing of the noisy trajectory. In order to obtain this effective dynamics a multistep predictionkerrd) (n Eq. (5) has to be used.

shadowing problem, and we obtain the optimal effectivetory of the original dynamics evidently exists, and the true
model for the locally shadowing pieces of trajectory. A suit-underlying original dynamics could be obtained to very high
able combination of different components in the resultingaccuracy. The multistep cost function avoids the problem of
vectors yields the global pseudo-orbit. We recall our methognutual inconsistency between subsequent base points en-
in the following: We are searching for deterministic pieces ofcountered if one uses only a one-step prediction error cost
a trajectory(for k time stepgobeying the dynam|cfs which  function.
are at the same time close to the observed data loviene Due to the lack of a shadowing trajectory of the original
steps. Thus, for each delay vectgrwe introduce a point dynamics in the case of dynamical noise we observe a strong
g and itsk images under the dynamids Then the contri- form of what we phrased “mutual inconsistency” [i]] that
bution of a given single delay vectgrto the new cost func- cannot be overcome on using the original dynamics. For
tion is the sum of thé& Euclidean distances betwe&rpairs k=1 in Eq.(5) the image of a base poiaf of a points; is
of (m+1)-dimensional vectors: The first pair is; (Sj+1)  generally not close to the base poiats; of the next points
and the vectofa; ,f(a)), the nextk—1 pairs are formed by s _; of the pseudotrajectory. Especially at HTs the mecha-
the successive images of these two vectors, where the i |magﬁrsm described above and[i] induces the loss of the shad-
of the noisy vector g ,s; ;1) are just read off from the noisy owing possibility, which is explained in Fig. 4. The use of
input data, and the images (& ,f(a)) are constructed with the standard cost functiof®) (with minimization with re-
the dynamicd. Finally, & is defined by the fact that it mini- spect to the parameters ) or usingk~1 in Eq.(5) is not
mizes the sum of thededistances or, in other words, mini- sensitive to this mutual inconsistency as local shadowing is
mizes the accumulatedd-step Euclidean prediction error. not used. By calculating the optimal effective dynamics us-
The pointsa are called base points in the following and ing the cost functiori5) with sufficiently largek we suppress
represent the optimal shadowing piece of a trajectory withhis mutual inconsistency: The resulting dynamfcgsche-
dynamicsf. We are looking forf such that these shadowing matically given in Fig. 4 by a dashed linby construction
orbits are optimally close to the observed data. The codeads to local shadowing for the noisy trajectory also at HTSs.
function thus reads The base point§a;} appropriately weighted over the differ-
n ent components serve well for a noise-reduced trajectory.
2 E (s, S, )—(a a )2 Thus we obtain_both the effeqtive dej[erminist_ic Qlynamics
N e TEjmm S bizme s L and the approximate shadowing orbit. In principle, one
(5)  should choose the number of steépas large as possible. The
higherk is chosen the better our construction of an “effec-
which has to_be minimized with respect to tagand the tive” dynamics for the noisy trajectory is. If we were able to
parameters irf. find an initial vectora,, and a functiorf such that the iterates
The numerical implementation of this cost function for of a,, remain close to the observed data for all the next
different Ansaze of the functionf is in detail discussed in T—m steps, we would have solved the problem in the opti-
[6]. It was shown that this methods works very well in the mal way: We would know a shadowing clean trajectory for
case of pure measurement noise, where a shadowing trajegi our noisy observations. Due to the sensitive dependence
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on initial conditions, this is numerically not achievable, and 192 r . . . T T . r
in practice we are able to proceed urkit=15. For most 1-step ~o—
systems, though, fde~ 15 the divergence of trajectories ini- g;g{gg .y
tially within the noise level will reach the length scale of the er dlep x-
entire attractor. ‘75232% x

188 | 8-step -+
B. Increased parameter shadowing

In [9] it was rigorously shown that one-dimensional maps
can allow increased parameter shadowing in specific param- ©
eter regimes: For a given pseudotrajectory of a dynamics
f, there exists a5>0 such that there exists a shadowing
trajectory evolving afterf,, s, where it is assumed that the
Kolmogorov-Sinai(KS) entropy of the map increases mono-
tonically ina. The increase of the parameter for the tent map
and the logistic equation is then related to the increase of the
entropy under perturbation with noise. In this section we
want to relate our work to these results. Our method is not

1.78 1 1 1 1 ! 1 1 1

restricted to a specific class of systems, but, of course, appli- "0 0005 001 0015 002 0025 003 0035 0.04 0045
cable to the one-dimensional maps considered9in Our noise levelin rms
guantitative results are in full agreement with their qualita- 0.005 . . . . . : . .

tive predictions. Choosing th&nsatzof a quadratic polyno-
mial f ,(x) =1— ax? with only a as a parameter and applying 00045 - iy
the cost function5) for a fit, we obtain increasing param-

etersa for the effective deterministic dynamics; see Fig. 5: 000 e ]
Complementing the results i®] our methods thus yields 0.0085 - .
quantitative results: We chose=1.8 for the deterministic

map and construct the effective dynamics for differkrin 0.003 | .
Eq. (5) and noise levels. The effective parametedescrib- .

ing the effective dynamics increases wkhand converges o %% A

against an effectiva that can be considered as the optimal

increased shadowing parameter. In order to show the rel-
evance of these effective parameters we construct pseudotra- o015 | 4
jectories using the new parameters and compare the result to

0.002 ]

the old parameter§-ig. 5): The capacity of , for shadowing 0.001 - . .
increases drastically. N, JUB——
0.0005 |- */v ]

IV. CHARACTERIZATION OF NOISY SYSTEMS 0 Loy : . . . .

0 0.006 0.01 0015 0.02 0.025 003 0.035 0.04 0.045

The presence of noise changes the invariant features of roise level in rms

the system. Exactly speaking, dimensions, entropies, and rg 5. Logistic map, ., =1— 1.8 with noise. The dynamics
Lyapunov exponents defined in the standard way becomgas reconstructed according to E@) for different k using the
meaningless since on the small scales the noise proceggadratic ansatf,(x)=1—ax?. The parametea versus the noise

dominates and they become infinite. If the noise level ievel in rms is shown. Below we show the obtairieg, after noise
small enough, though, we are still able to observe the chareduction with the original dynamios,, ;=1— 1.8 and the effec-

acteristic scaling properties on larger scales such that effegve dynamics with a value cd obtained fork=8.
tive Lyapunov exponents can be defined. These values can
differ considerably from the deterministic values.

In this section we want to develop some measures in ordépduced attractor deformatiqi8]). Another question is how

. ; . comparable the noisy attractor is with the original attractor of
to compare the effect|_ve dynam@sconstrgctgd in Sec. I the deterministic system after the deformations or prolonga-
to the original dynam|ca_‘ to show qganhta‘uvely the _reI— tions occurring due to nois8]. A quantitative comparison

evance off for the modeling of the noisy data. They will be of the shape of two fractal attractors can be made by the
used for model verification in Sec. V. cross correlation sum. First we reconstruct the attractor by
delay embedding with dimensiamn. A measure for the de-

viation of the noisy attractor from the clean attractor is then

) ) ) . given in[14], to which we refer for more details: Computing
The scaling range of the standard correlation dimensioRhe cross correlation sum

[13] Dz(e)%(&/alne)lnzﬁj#i(@(e—|xi—x]-|)~const is lim-

ited to large scales in the presence of noise. The standard IX| Y|

correlation sum is not very useful in the case of dynamical Cofe)=—— Ole—|lx—Vv 6
noise, as the noise acts on different length scétesse- xv(e) |X||Y|Zi EJ: (e=lPi=ilD ®

A. Cross correlations
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' - - - ; ; : ' for the Henon system: The curve for measurement noise
s oo A characterizes a distinet, corresponding to the noise level,
oCross corr. . dyn. noise while the curve for dynamical noise shows anthat is an
noise level - order of magnitude larger than the noise level. This is a
signature of the noise-induced attractor deformation de-
scribed above and i8]. A dynamics that describes the noisy
data more appropriately is expected to yield an attractor in
better correspondence with the noisy one: The attractor
001 L sl | should form a good “skeleton” for the noisy atract(see
Figs. 1 and 9 such that the cross orrelation diverges from
the autocorrelatiorisolid line) at smallere.

B. Lyapunov exponents

/ , , ) ) ) The degree of chaos in noisy systems can be measured by

8 75 7 85 6 85 s 45 “ 385 considering the rate of divergence of two initially close tra-
log, ¢ jectories under the same realization of noise. Mathematically

, . there exists a well-defined concept of Lyapunov exponents in

FIG. 6. Cross correlation sum8 between clean and noisy what is called stochastic dynamical systefi$,16. The

Henon attractor(4) with 2% white uniform noise for dynamical . . .
. . R maximal Lyapunov exponent is thus defined by
noise and measurement noise. The length scale is given in a dyaqug

logarithm. The vertical line gives the noise level.

:
i1]1 Df(x;)Uo ) 8

1
] A=lim —In(
between the seX of clean data pointg; and the sety of Tow |
noisy pointsy;, the differences between the attractors be-

come observable below a critical . Precisely, after defining

a tolerancep, e, is defined as follows: foE< e, where{x;} is the noisy trajectory, for almost all,. This is a

clear mathematical definition, but it can lead to a severe mis-

[INCyxx—INCyy|<p, [INCyy—INCyy|<p, interpretation of the effects of noige.g., the claim of noise-
induced order in the logistic mal7]). In applications to
and fore=e, noisy systems one has to make the unrealistic assumption

that neighboring trajectories are subject to the identical noise

[INCyx—INCxy|>p or [INCyy—InCyy|>p. (7)  realization, such that the exponent given by @j.can never

be determined from experimental data[ 18] a more natural
In the case of measurement noise thiss again determined indicator of chaos in noisy systems is introduced considering
by the noise leve[14]. The specific effects of dynamical the rate of separation of nearby trajectories under different
noise on different length scales can be very well observed inealizations of noise that corresponds exactly to what one
the cross correlation with the clean data exemplified in Fig. &alculates when determining the Lyapunov exponent using

0.5 T T T T T T

FIG. 7. S(r,¢€) in Eq. (10) for
the Heon system with 2% dy-
namical white uniformly distrib-
uted noise for different e,
e=kX (noise level, with
k=2-8. Note that the slopes of
the curves differ for differente.
For comparison we also plotted
the slopes of the clean system
(most upper and lower straight
lines). Our estimate of the effec-
tive (or finite-range Lyapunov
exponent gives approximately 0.4,
compared toA=0.318 for the
Lyapunov exponent of the noise-
free system.

Sue

35 I I I ) I I
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FIG. 8. *Lyapunov expo-
0.4 nents” for the Haon system(4)
after Eq.(10) (different noise real
< and Eq.(8) (identical noise real
0.38 for different noise levels. The fi-
nite range takes into account the
e dependence and curvature ef-
0.36 fects in curves like Fig. 7.
0.34
032 1 i 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Noise level

the phase-space method|[itQ]. Nevertheless, the notion of process and above which the deterministic divergence oc-
Lyapunov exponents becomes awkward in the presence @urs. In order to give a measure of the chaos of the noisy
noise: The clear and unambigious definition of Lyapunovsystem a finite-size Lyapunov exponé&nf18]

exponents(8) relies on the ability to observe exponential

divergence of nearby trajectories in the lirfit=o, which (e An)= 1 | ox(n+An) 9
implies the limite— 0. This becomes impossible in the pres- (e,An)= An ox(n) ©
ence of noise under different realizations for neighboring tra-

jectories as the initial distance between neighboring trajectoalong a trajectory{x,} is introduced, wheréx(n) = e gives

ries cannot be chosen smaller than the noise level in order tdne initial distance between the neighboring trajectories.
define an exponential divergence. Noise introduces an addiFhe average one-step divergenéenE 1) measures the pre-
tional length scale in chaotic systems, below which the di-dictability of the system with respect to a finite tolerance
vergence of nearby trajectories is dominated by a diffusivegiven a finite initial precisiore. In the presence of only one

2 T T T T T T T
1.5 F -
1 - -
05 | -
FIG. 9. Attractor obtained by
= OFf . fitting the noisy data underlying
Fig. 1 using the cost functiofb)
with k=14 and a function(1l)
0.5 T with six neurons.
1k g
1.5 .
_2 ) 1 1 1 1 | 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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0.012 T T T T

0.01 1 -—
2 e
4o + P
&
10 *-
0.008 | s & -~
i : FIG. 10. L2 distance(12) be-
N\n 7 B tween the fitted dynamic$ and
0.006 |- - x the unperturbed dynamick as a
W . function of the noise level for the
’ r Hénon system(4) for different k
0.004 * s used in the construction of by

Eq. (5).

0.002

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Noise level

positive Lyapunov exponent this predictability is directly locally positive and negative Lyapunov exponents over long
correlated to thes entropy introduced by Kolmogorop20]  time periodg[18]: In the case of the identical noise realiza-
and thoroughly discussed [21]. For e—0, An—< in the tion the contracting intervals can compensate the expanding
noiseless case we recover the usual Lyapunov exponent. Bintervals(as in the noiseless cgsand in the case of a cor-
in contrast to the well-defined Lyapunov exponent for infini- responding noise-induced shift of the invariant measure a
tesimal perturbations the finite-size Lyapunov exponent ishift from positive to negative values of the Lyapunov expo-
explicit e dependent. I18] a particular length and time nents can occyrl7]. This is no longer possible in the case of
scale are chosen to define a measure of chaos in noisy sydifferent noise realizations: Here for the contracting intervals
tems minimizing the information entropy of the noisy sys-the contraction is limited to the noise level.
tem. We calculate the finite-size Lyapunov exponent in a
The difference of these two different definitions of a modified way using the algorithm to calculate the largest
Lyapunov exponent(8) and (9) becomes obvious for Lyapunov exponent introduced j22]. This method detects
strongly nonuniform systems where there is an alternation oéxplicitly the exponential divergence of nearby trajectories,

0.11 T T T T T T

01 F :
0.09 | .
0.08 |- .

FIG. 11. Geometrical distance
0.07 - - €. defined in Eq(6) of the attrac-

© tor of the fitted dynamics from the
noisy attractor as a function &

0.06 | . X
in Eq. (5) for the Haon system
with 3% noise (=0 corresponds

0.05 ¢ i to f=").

0.04 | .

0.03 | §

002 1 1 1 1 1

0 2 4 6 8 10 12 14
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FIG. 12. Lyapunov exponents
for the fitted dynamics for differ-
entk in Eqg. (5) as a function of
the noise level. The vertical lines
give the results from Fig. 8.

0.38

0.36

0.34

[
0.32

0.015 0.02 0.025 0.03 0.035
Noise level
which is implicitly assumed to be the casd ii8,19. Choos- We claim that the rate of divergence of nearby trajectories

ing a trajectory of the system of lengiy we consider for under different realizations of the noise is best expressed by
each poini; a certain numbeK of nearby pointg/; that are  the slope in Eq(10). As we construct effective dynamics for
close tox; within e. Then we compute the average distanceghe noisy systems we constructed the cost functirsuch

D between all these neighboring trajectories and the referthat the change in divergen¢ehange of Lyapunov expo-
ence trajectorie$x;} for the differentx; as a function of the nents due to noise is best considered in the estimate of the

relative timer. Thus we compute optimal model functiorf. Here our focus is on the modeling
T K of these changes. A more systematic investigation about why
_12 1z i there occurs a change of the exponential behavior in noisy
S(E’T)__izl In K= DX yii7) |- (10 systems will be explained elsewhere.
For a certain range, S(7) should increase linearly with the V. NUMERICAL INVESTIGATIONS
slopeA(€), which is the estimate of the Lyapunov exponent. i
dS(t,€)ld7 is equivalent to the average one-step divergence A. The Henon attractor
(An=1 and averaging ovem) in Eq. (9). For a thorough As a numerical illustration we choose thé i@ system

discussion of this method, s¢82]. This scaling is an ex- (4) with dynamical noise. We will reconstruct the modified
plicit test for exponential divergence of the trajectories notfeatures of the noisy system using a modified deterministic
automatically guaranteed in noisy systems as in addition tghodel. A construction of an optimally shadowing trajectory
exponential divergence of nearby trajectories we have an Uwith this model will be compared to the construction with
derlying diffusion process following a powe[-law behavior. the original dynamics.

This is shown in Fig. 7, wher&(r) for the Heon system Constructing an effective dynamics with E@), we ob-
with 2% dynamical noise is presented for differentWe  tain an attractor that shadows the noisy attractor much better
clearly observe a scaling range for the growth of the initialthan the original attractor. A first impression can be obtained
perturbation of sizee. We also observe that the slope is in Fig. 9: Here we show the attractor of the dynamics recon-
slightly different for smaller values of [i.e., S(7) is explic-  structed from the data shown in Fig. 1 using the cost function
itty e dependerjt We stress that for high noise levels the (5) with k=14. We intentionally do not restrict ourselves to
scaling range disappears and an average exponential growithe structure of the original system in the choice of Are
cannot be defined any longer. In Fig. 8 we show thesatzfunction. Therefore, neural networks,23]

Lyapunov exponents obtained for the two different defini-

tions (8) and (10) for the noisy Haon system(4) for differ- 6 a

ent noise levels. We explicitly checked for scaling using Eq. f(x)=i=21 2 (13)
(10). The finite bandwidth of the finite-size Lyapunov expo- 1+ex;{ — > Wi Xe— bi)

nents obtained using E@L0) takes into account theik de- k=1

pendence as well as the small curvature. Besides the differ-

ences between the two methods, one can clearly observe thave proven to yield very good results as a general form of
deviation from the underlying deterministic systeizero  the functionf. In particular, we chose a neural net with six
noise. neurons in one hidden layer.
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FIG. 13. Eg, and EJ,, (in
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Eq=[(1N)=;(s;—y;)?]"? of the
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In order to see how the effective dynamics is shifted withdynamical noise in the H@n system using fits as in E)
respect to the original dynami¢and to compare the effects for differentk. In order to see how much better the effective
of varyingk in Eqg. (5)] we have to introduce a measure for dynamics obtained with a high step prediction error cost
the distances of two dynamical systems[6hwe introduced function describes the noisy dynamics we show the attractor
a natural form to measure the distance between two maps Hjistance €. for the cross correlationdefined in Eq.(6) in
the L? norm restricted to the attractot of the unperturbed Fig. 11: For high enough in Eg. (5) the distance to the
dynamics and weighted according to the invariant measurenOiSy attractor appears on a scale one order of magnitude

smaller than the original dynamics. As impressive are the
1T results for the Lyapunov exponents: In Fig. 12 we show the
2=([F() = F(X)1?) 4~ = X —F(x)12. (12 Lyapunov exponents of the effective dynamics for different
S2=([FC0 =100 thl[ v~ 11 (12 k in Eqg. (5). They should be compared with Fig(@iven by
the vertical bars in Fig. 12
where{x;} is a noise-free time series given Iby This dis- In order to see how much better the “new” dynamics
tance is shown in Fig. 10 as a function of the noise level ofdescribes the noisy data in terms of our concept of pseudo-
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i ics (Henon map and usingf of a
108 k=14 fit (5) for 3% dynamical
noise.
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trajectory shadowing, we performed a noise reduction acThe resulting noisy attractor is shown in Fig.(th We can
cording to Eq.(3) with the original dynamics and the fitted clearly observe the attractor deformation at homoclinic tan-
dynamics and calculated thkestep dynamical error genciegwhich are also marked in Fig. (&, calculated after
the method in[8]]. In Fig. 15d) we show a part of the
1 N obtained attractor performing a fit using the cost function
Edon= \/NE [isk—F4y)]? (13)  with k=12. This gives a deterministic attractor much better
=1 serving as a skeleton for the noisy attractor in Fig(bl5
_ [with the same part as in Fig. (¥, given also in Fig. 1&)].
on the cleaned datgy;}. In Fig. 13 we show the result for \ye want to make one brief comment about the origin of
k=1 andk=3 for differentn-step prediction errors used in ngise in the surface of sections of experimental flows. Noisy
the cost fun.ctlon. Thg values fEf'gyr.1 decrea;e by an order of flows do not reduce to noisy maps in the way we have
magnitude if the multistep prediction error in B§) is used  treated them. In general, the noise will depend on the point in
in the fits. In Fig. 14 we show the individu&,, after noise  the surface of sectiof8]. The effect of noise is different in
reduction for the original dynamics aridcompare also Fig. different parts of the phase space, depending on the local
2). stretching and dissipation resulting in a spatially dependent
All these figures show very well how much better the amplitude density of noise in the Poincasection. But the
noisy system can be described by the modified dynamicggeneral effect of the noise-induced attractor deformation ap-
Figures 9—12 together give a very nice example of the pospears as well. An investigation on experimental systems with
sibility of describing noisy systems by modified effective dynamical noise is in progre$&5].
dynamics:(i) The constructed cleaned trajectory is more de-
terministic(i.e., with lowerEgy,) than the equivalent one for VI. CONCLUSION
the original dynamics(ii) the synthetic attractor describes ) )
the geometric features of the noisy attractor much better, and We presented a different approach to characterize data
(i) the quantitative analysis of Lyapunov exponents ingi-that are contaminated by dynamical noise. This method is

cates that features of the noisy system are better described BSed on the idea of a modified shadowing in nonhyperbolic
the modified dynamics. systems: parameter shadowing. The features of the noisy sys-

tem can be quite different from the underlying deterministic
) system, which is(i) geometrically expressed in attractor
B. An experimental example modifications[8], which leads to different scaling behavior
As a further example of the effect of the noise-inducedfor the correlation dimension expressed by a large deviation
attractor deformation and our finding of an effective dynam-from the original attractor in the cross correlation integral,
ics we want to illustrate our method for an experimental datand (i) quantitatively expressed in different values of the
set. Figure 1&) shows the attractor of a Poincarep of the  finite-range Lyapunov exponenige) for the noisy system.
laser experiment with feedback, run by the National Institute/Ve were able to show how much better the noisy system can
of Optics in Florence, Italy24]. It was calculated by a fit be described by a modified dynamigsleading to an attrac-
with a neural network with six neurons. We artificially per- tor with geometrical features similar to the noisy system and
turbed the map with 1% white, uniformly distributed noise. (ii) yielding values ofA that are similar to the noisy system.
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FIG. 15. (a) Poincaremap of the Florence Laser attractor with homoclinic tangenéi®sAttractor with dynamical noisec) Enlarge-
ment of a noisy attractafb) and the attractor ifa). (d) Enlargement of a noisy attractér) and the attractor of a dynamics obtained by a
fit (5) with k=12.

Our method of constructing this effective dynamicss  give some qualitative reasoning in this direction.
based on using a multistep prediction error in the cost func- Our last point concerns the analysis of real data: Dynami-
tion (5) such that locally shadowing pieces of trajectories arecal noise evidently is present in many physical data sets.
constructed and the dynamiésunderlying these shadowing Often the detection of dynamical noise remains impossible
trajectories can be extracted. With the helpf af less noisy  (Se€[26]). Our cost function(5) should give some hints in
trajectory can be constructed using methods introduced ifhis directiond(if the observed noise level is not too hijghf
[1,4,5. It remains an open problem whether an exactly shadwe use differenk and obtain varying results for the fiton-
owing trajectory for a modified dynamics exists generally forsistently for different forms of thénsatz f) we can give
nonhyperbolic systems in the sense of the ordinary shadowevidence of the presence of dynamical noise. On applying
ing theorem[7] for hyperbolic systemgas was shown for the standard techniques of nonlinear time-series analysis one
very specific one-dimensional maps [id]). This question most likely obtains results corresponding to the modified,
exceeds the purpose of this paper, but we hope to be able &ffective dynamics rather than the original dynamics.
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